Com fer un comptador Geiger

comptador geiger casolà

Three Milles Island, Txernòbil, Fukushima, i fins i tot alguns en territori nacional com el de l'reactor Coral-I a Madrid o el de Vandellòs-I a Catalunya. Són molts els accidents nuclears que han ocorregut al llarg de la història, i malgrat les terribles conseqüències, sembla que aquest tema de la radiació segueix aixecant certa atracció. Però el que pocs saben és que, diàriament, tots estem exposats a radiació natural, tant la que ve de l'espai exterior com la que procedeix dels minerals de la terra ...

Doncs bé, si vols mesurar la radiació que hi ha al teu voltant, en aquesta nova guia et mostrem pas a pas el procediment de com pots construir un comptador Geiger, És a dir, un dispositiu capaç de mesurar radioactivitat. Bàsicament és un aparell que pot mesurar partícules que impacten amb el sensor, com poden ser la radiació ionitzant, per aquest motiu es digui comptador, ja que pot comptar el nombre d'impactes i per tant el nivell de radiació d'un objecte o lloc.

Què he de saber abans?

símbols radiació no ionitzant i ionitzant

Abans de començar amb el projecte DIY, m'agradaria comentar alguna cosa sobre la radiació, Per a aquells que no sapigueu hacerca d'ella. Els que ja teniu coneixements previs, podeu saltar aquesta apartat i anar directament a veure els següents ...

Què és la radiació?

És un fenomen de prograpación d'energia en forma d'ones electromagnètiques o en partícules subatòmiques a través d'un mitjà. Per tant, podem tenir diferents tipus de radiació.

Quins tipus de radiació ha?

espectre electromagnetico

hi ha molts tipus de radiació, Com la tèrmica, electromagnètica, etc., però les que aquí ens interessen són dos grans grups:

  • no ionitzant: És una ona o partícula que no pot arrencar electrons de la matèria, és a dir, no pot ionitzar. Exemples d'ella poden ser les ones electromagnètiques de microones, ràdio, llum, etc.
  • ionitzant: És una ona o partícula que pot arrencar electrons de la matèria, és a dir, pot ionitzar per la seva alta energia. Per tant, es tracta de la més perillosa de totes. Dins d'aquest grup tenim el làser, raigs X, alfa, beta, gamma, radiació de frenada o bremsstrahlung), etc.

Si ens fixem en l'espectre electromagnètic, Les ones de major longitud d'ona, com les de ràdio o microones, són les menys penetrants, les que menys energia tenen (menys freqüència). Mentre que, amb formi anem desplaçant-nos a l'a dreta, veiem que cada vegada la longitud d'ona és menor i la freqüència de vibració més gran, per tant tenen més energia i són més penetrants i nocives.

Tipus de radiació ionitzant:

Alfa, Beta i Gamma

Si ens centrem en la radiació ionitzant, La qual és capaç de mesurar el comptador Geiger, hem de tornar a filtrar i centrar-nos en tres fonamentals degudes a fenòmens nuclears:

  • alfa: Tenen càrrega positiva i estan compostes per dos protons i dos neutrons, és a dir, són un àtom d'heli. Són les menys perilloses i penetrants, ja que es poden aturar usant un simple paper. L'efecte sobre la salut depèn d'algunes qüestions, ja que ni tan sols poden travessar la capa externa de la pell, però si s'introdueixen dins el cos sí que poden ser perjudicials. Per inhalació, ingestió o injecció en el cos de fonts que produeixin aquesta radiació podrien danyar el teixit viu.
  • beta: Són partícules de càrrega elèctrica negativa, electrons. Són més penetrants i energètiques que les anteriors, i per aturar-ho podríem fer amb un paper d'alumini de cuina. Tot i ser més penetrants, no són tan perjudicials per al teixit viu i l'ADN com les anteriors, ja que les ionitzacions que provoquen es produeixen de forma més espaiada. Podria produir cremades a la pell, i si s'introdueixen en el cos podria ser però ...
  • Gamma: Els raigs gamma són els de més poder de penetració i energia, per tant els més perillosos de tots. Es tracta de fotons, pura energia que no es pot aturar fàcilment, només amb planxes de plom, formigó, etc. Passen fàcilment a través del nostre cos i produeixen danys greus en els teixits, mutacions en l'ADN, etc., amb el que això comporta, com càncer i fins i tot la mort fulminant si la dosi és alta.

Per tant, no es tracta d'un joc, i des hwlibre t'animem a que prenguis totes les precaucions i sàpigues bé el que estàs fent. No ens fem càrrec dels possibles problemes ...

Tubs Geiger-Müller:

tub geiger

Són l'ànima de tot comptador Geiger, ja que és el dispositiu o sensor que s'encarrega de rebre la radiació i transformar aquest nombre de xocs en un impuls elèctric capaç de ser interpretat per la resta de la circuiteria. Es coneix com a tub Geiger-Müller o simplement tub de Geiger, i el podeu comprar en diverses botigues en línia, com Amazon, Aliexpress, etc. Una altra opció és treure-se'l a un comptador Geiger que tinguem vell o en desús.

Hi ha multitud d'ells, diferents models (SBT-9, LND-712, J408y, ...) i diferents fabricants (GSTube, LND, North Optic, ...). Els més populars són els americans i russos, Tot i que també n'hi ha xinesos. Alguns d'origen soviètic solen tenir preus barats, sent els més cars els LND. El que sí hem de tenir clar és els valors de voltatge entre els quals es mou, ja que el senyal analògic que emet serà més o menys intensa segons la radiació captada.

funcionament de l'tub Geiger amb un impacte de partícula

Pais venedor Model Partícules que capta voltatge material Preu
Rússia GSTube SBM-20 Beta / Gamma 400V Alumini Sota
Rússia GSTube SBM-21 Beta / Gamma 650V Alumini Sota
Rússia GSTube Si-1g Gamma 440V Alumini Sota
Rússia GSTube SBT-9 Beta / Gamma 389V Alumini Sota
Rússia GSTube Si-3bg Beta / Gamma 400V Alumini Sota
EUA Lnd LND-712 Alfa / Beta / Gamma 500V mica Medi
EUA Lnd LND-7124 Alfa / Beta / Gamma 500V mica Alt
EUA Lnd LND-7224 Alfa / Beta / Gamma 500V mica Alt
Xina North Optic J408y Gamma 420V vidre Sota
Xina North Optic J305B Beta / Gamma 350V vidre Sota
Xina North Optic J306B Beta / Gamma 420V vidre Sota

per això haurem calibrar el nostre circuit per convertir aquestes senyals en les nitats en què se sol mesurar la radiació, com és el Sievert (Sv), roentgen, o el Rem, entre d'altres ... Igual que faríem amb un sensor de temperatura, que hem de transformar aquests voltatges de sortida a els graus Celcius o en l'escala que estiguem mesurant.

Unitat de l'SI per a mesurar radiació:

El Sistema Internacional (SI) té com a unitat per a això el Sievert (Sv), Recordem que hi ha taules que ens indiquen la perillositat o efectes de la radiació que estem captant per a la salut:

mSv Efectes sobre la salut
50-100 Canvis en la química de la sang
500 Nàusees en qüestió d'hores
700 vòmits
750 Pèrdua de cabells en 2 o 3 setmanes
900 diarrea
1000 hemorràgies
4000 Possible mort en dos mesos

Ja saps que no només depèn de la dosi, també de la exposició. És a dir, podem rebre una dosi de 100 mSv una vegada i no passar res, però si estem rebent 50 mSv durant mesos, es que els efectes a llarg termini podrien ser molt negatius ...

Fonts de radiació per als tests:

Cristalls d'urani i detector de fum

Per realitzar proves de radiació, Heu de saber que hi ha diverses opcions. Hi vidres d'urani com els que veieu a aquesta imatge (esquerra) amb els quals es proven en els laboratoris els comptadors Geiger. Però hi ha altres fonts més properes de les que podem aconseguir radiació o material radiacitivo, com per exemple dels sensors de fum que hi ha als detectors d'incendis.

Dins d'aquests detectors hi una font de radiació ionitzant de americi i produeixen radiació alfa. Fins i tot has de saber que molts aliments rics en potassi tenen un isòtop anomenat Potassi-40 que emet radiació, encara que per res és un problema per al nostre organisme, es tracta d'dósis molt baixes, a l'igual que la radiació que rebem de la pròpia naturalesa (certes roques granítiques) o de l'cosmos.

Nosaltres mateixos som radioactius, estem fets de carboni i el carboni-14 ho és. però et sorprendrà saber que fem servir diàriament moltes coses radioactives sense saber-ho: alguns botons, ceràmiques, marbre, certes llums de càmping, cigarrets, paper cuixé, algunes metxes, etc. Tot això ho podria fer servir per provar la teva comptador Geiger i veure si funciona o no ...

Però torno a repetir, heu de tenir precaucions a l'hora de manipular certes fonts.

Materials necessaris:

Un cop sabut tot això, vam passar directament a llistar tots els components que ens fan falta per construir el nostre comptador Geiger casolà:

  1. Mòdul regulador / convertidor DC-DC d'alt voltatge (pe: SODIAL). Ens servirà per ajustar els alts voltatges que manegen els Geiger-Müller i que transformi aquest voltatge en un petit voltatge comparible amb les plaques Arduino i altres components. Recorda que ha de suportar el voltatge d'entrada de l'tub que hagis triat.
  2. Mòdul de càrrega. per exemple aquest.
  3. mòdul Bust Converter DC-DC 3-5v.
  4. Arduino Nano, Tot i que també serveix qualsevol altre, però per no augmentar massa la mida és preferible el Nano.
  5. display OLED 128 × 64 o 128 × 32 que farem servir com a pantalla per mostrar els resultats dels mesuraments.
  6. transistor 2N3904 per al nostre tub.
  7. resistències de 10M ohms i una altra de 10K.
  8. condensador de 470pf.
  9. interruptor per apagat i encès.
  10. brunzidor o petit altaveu.
  11. pila AAA.

Això pel que fa a components, encara que et caldrà també eines com soldadors, cablejat per a algunes unions, Arduino IDE per programar la placa, bateria o piles, i també una caixa a mida si vols protegir la teva comptador. Si tens una impressora 3D, pots construir la caixa en plàstic a mida.

Construcció de el comptador Geiger pas a pas:

Diagrama de circuit de el comptador Geiger

El següent, un cop tinguis tots els components, és muntar tots els components de l'puzle segons aquest diagrama que et presentem. el muntatge és relativament senzill i no necessita de major expicación. És tan sol connectar tots els elements així. Pots fer-ho en una placa de prova abans per provar que tot funciona correctament i després procedir a soldar tots els components per fer-ho permanent.

passos:

Els passos a seguir són els següents:

  1. Amb un polímetre pots calibrar el voltatge (Imatge 1). Per exemple, si has triat un tub Geiger-Müller de 410V, has d'anar ajustant el potenciòmetre de la lliçó DC-DC perquè treballi a aquest voltatge.
  2. Després, limita't a soldar o unir tots els components tal qual apareixen en el diagrama anterior com en la Imatge 2.
  3. Pots utilitzar una caixa per protegir tots els components o no.
  4. Connecta amb un cable USB la placa Arduino al teu PC i amb IDE Arduino escriu el següent programa (pots descarregar-lo aquí) per programar i que pugui convertir els voltatges amb els que treballem a mesuraments en la unitat que hagis triat. Podeu fer servir altres unitats si ho prefereixes o fer ajustos modificant el codi font de l'esquetx ...
/*
*
* SCL - A5
* SDA - A4
*
*
* Voltmeter - A3
*
* PWM - D9
* Input - D2
*
* buzzer - D7
*
*/

#include <Bounce2.h>

#include <SPI.h>
#include <Wire.h>
#include <Adafruit_GFX.h>
#include <Adafruit_SSD1306.h>

#define OLED_RESET 4
Adafruit_SSD1306 display(OLED_RESET);

#define NUMFLAKES 10
#define XPOS 0
#define YPOS 1
#define DELTAY 2

//////////////////////////////////////////////////////////////////////////////

unsigned long previousMillis = 0;
unsigned long previousMillis1 = 0;
const long interval = 40000;
const long interval1 = 500;

static const unsigned char PROGMEM lcd_bmp[] =
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x7F, 0xE0, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x80, 0x1C, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x07, 0x00, 0x0E, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0F, 0x80, 0x1F, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x1F, 0x80, 0x1F, 0x80,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x3F, 0x80, 0x1F, 0xC0,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x7F, 0xC0, 0x3F, 0xE0,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xC0, 0x3F, 0xF0,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xC0, 0x3F, 0xF0,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xE0, 0x7F, 0xF8,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0xFF, 0xE0, 0x7F, 0xF8,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0xFF, 0xFF, 0xFF, 0xF8,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0xFF, 0xF0, 0x7F, 0xF8,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0xFF, 0xE0, 0x7F, 0xF8,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0xFF, 0xC0, 0x3F, 0xF8,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0xF8, 0x00, 0x03, 0xF8,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x20, 0x40, 0x38,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x10, 0x80, 0x08,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x09, 0x00, 0x08,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x0F, 0x00, 0x08,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80, 0x1F, 0x80, 0x18,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80, 0x3F, 0xC0, 0x10,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xC0, 0x7F, 0xC0, 0x30,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x40, 0xFF, 0xE0, 0x20,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x20, 0xFF, 0xF0, 0x40,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x11, 0xFF, 0xF8, 0xC0,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0F, 0xFF, 0xF9, 0x80,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x07, 0xFF, 0xFE, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x03, 0xFF, 0xFC, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x7F, 0xE0, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};

static const unsigned char PROGMEM logo[] =
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x7F, 0xE0, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x80, 0x1C, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x07, 0x00, 0x0E, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0F, 0x80, 0x1F, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x1F, 0x80, 0x1F, 0x80,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x3F, 0x80, 0x1F, 0xC0,
0x07, 0x9E, 0x00, 0x00, 0x00, 0x03, 0xFF, 0x00, 0x3F, 0x80, 0x00, 0x00, 0x7F, 0xC0, 0x3F, 0xE0,
0x07, 0x9E, 0x00, 0x00, 0x00, 0x03, 0xFF, 0x00, 0x3F, 0xC0, 0x00, 0x00, 0xFF, 0xC0, 0x3F, 0xF0,
0x07, 0x9E, 0x00, 0x00, 0x00, 0x03, 0xFF, 0x00, 0x3F, 0xE0, 0x00, 0x00, 0xFF, 0xC0, 0x3F, 0xF0,
0x07, 0x9E, 0x00, 0x00, 0x00, 0x03, 0xFF, 0x00, 0x3F, 0xF0, 0x00, 0x00, 0xFF, 0xE0, 0x7F, 0xF8,
0x07, 0x9E, 0x3E, 0x73, 0x9C, 0x00, 0x78, 0x3E, 0x3E, 0xF0, 0xF0, 0x01, 0xFF, 0xE0, 0x7F, 0xF8,
0x07, 0x9E, 0x7F, 0x33, 0x98, 0x00, 0x78, 0x7F, 0x3E, 0xF1, 0xF8, 0x01, 0xFF, 0xFF, 0xFF, 0xF8,
0x07, 0x9E, 0x7F, 0x33, 0xB8, 0x00, 0x78, 0x7F, 0x3E, 0xF3, 0xFC, 0x01, 0xFF, 0xF0, 0x7F, 0xF8,
0x07, 0xFE, 0xE7, 0x33, 0xB8, 0x00, 0x78, 0x73, 0xBE, 0xF3, 0x9C, 0x01, 0xFF, 0xE0, 0x7F, 0xF8,
0x07, 0xFE, 0xE7, 0x3F, 0xF9, 0xF0, 0x78, 0x73, 0xBE, 0xF3, 0x9C, 0x01, 0xFF, 0xC0, 0x3F, 0xF8,
0x07, 0xFE, 0xE7, 0x3F, 0xF9, 0xF0, 0x78, 0x73, 0xBE, 0xF3, 0x9C, 0x01, 0xF8, 0x00, 0x03, 0xF8,
0x07, 0xFE, 0xE7, 0x3F, 0xF8, 0x00, 0x78, 0x73, 0xBE, 0xF3, 0x9C, 0x01, 0x00, 0x20, 0x40, 0x38,
0x07, 0x9E, 0xE7, 0x3F, 0xF0, 0x00, 0x78, 0x73, 0xBE, 0xF3, 0x9C, 0x01, 0x00, 0x10, 0x80, 0x08,
0x07, 0x9E, 0xE7, 0x1F, 0xF0, 0x00, 0x78, 0x73, 0xBE, 0xF3, 0x9C, 0x01, 0x00, 0x09, 0x00, 0x08,
0x07, 0x9E, 0xE7, 0x1E, 0xF0, 0x00, 0x78, 0x73, 0xBF, 0xF3, 0x9C, 0x01, 0x00, 0x0F, 0x00, 0x08,
0x07, 0x9E, 0xE7, 0x1E, 0xF0, 0x00, 0x78, 0x73, 0xBF, 0xF3, 0x9C, 0x00, 0x80, 0x1F, 0x80, 0x18,
0x07, 0x9E, 0x7F, 0x1E, 0xF0, 0x00, 0x78, 0x7F, 0x3F, 0xE3, 0xFC, 0x00, 0x80, 0x3F, 0xC0, 0x10,
0x07, 0x9E, 0x7E, 0x1E, 0xF0, 0x00, 0x78, 0x3F, 0x3F, 0xC1, 0xF8, 0x00, 0xC0, 0x7F, 0xC0, 0x30,
0x07, 0x9E, 0x1C, 0x1C, 0xE0, 0x00, 0x78, 0x1C, 0x3F, 0x00, 0xF0, 0x00, 0x40, 0xFF, 0xE0, 0x20,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x20, 0xFF, 0xF0, 0x40,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x11, 0xFF, 0xF8, 0xC0,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0F, 0xFF, 0xF9, 0x80,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x07, 0xFF, 0xFE, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x03, 0xFF, 0xFC, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x7F, 0xE0, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};

static const unsigned char PROGMEM fl[] =
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x1E,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x1E,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x3F,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x21,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x21,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x21,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x21,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x21,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x21,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x21,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x21,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x21,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x21,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x21,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x21,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x21,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x21,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x21,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x21,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x21,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x21,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x21,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x21,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x21,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x21,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x21,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x21,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x21,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x21,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x3F,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };

static const unsigned char PROGMEM bt1[] =
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0C,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0C,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0C,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0C,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };

#if (SSD1306_LCDHEIGHT != 32)
#error("Height incorrect, please fix Adafruit_SSD1306.h!");
#endif

const int buttonPin = 2;
const int ledPin = 13;

int buttonState = 0;
int bt = 0;
int pbt = 0;
int s1 = 0;
unsigned long j;
unsigned long CR = 0;

unsigned long cs;
int sec;
/////////////////////////////////

float input_voltage = 0.0;
float temp=0.0;

///////////////////////////////////

Bounce bouncer = Bounce();

void setup() {

Serial.begin(9600);
display.begin(SSD1306_SWITCHCAPVCC, 0x3C); // initialize with the I2C addr 0x3C (for the 128x32)

display.display();

display.clearDisplay();

display.drawBitmap(0, 0, logo, 128, 32, WHITE);
display.display();
delay(2000);
display.clearDisplay();

TCCR1A = TCCR1A & 0xe0 | 2;
TCCR1B = TCCR1B & 0xe0 | 0x09;
analogWrite(9,22 ); // на выводе 9 ШИМ=10%

pinMode(ledPin, OUTPUT); //

pinMode (7, OUTPUT); // buzzer

pinMode(2 ,INPUT); // кнопка на пине 2
digitalWrite(2 ,HIGH); // подключаем встроенный подтягивающий резистор
bouncer .attach(2); // устанавливаем кнопку
bouncer .interval(5); // устанавливаем параметр stable interval = 5 мс

}

void loop() {

///////////////////////////////////////////////////////////////////////////////////////////////////////////////

unsigned long currentMillis = millis();
unsigned long currentMillis1 = millis();

if (bouncer.update())
{ //если произошло событие
if (bouncer.read()==0)
{ bt++;
}
}

if (currentMillis - previousMillis >= interval) {
previousMillis = currentMillis;
CR = bt;
bt = 0;
}

/////////////////////////////////////////////////////////////////////////////////////////////////////////////////
if (bt != pbt) {
pbt = bt;
s1 = 1;
}
////////////////////////////////////////////VOLTMETER PIN A3////////////////////////////////////////////////////////////////////

int analog_value = analogRead(A3);
input_voltage = (analog_value * 5.0) / 1024.0;

if (input_voltage < 0.1)
{
input_voltage=0.0;
}

///////////////////////////////////////////////TEXT ON DISPLAY//////////////////////////////////////////////////////////////////
display.clearDisplay();
display.setTextSize(2);
display.setTextColor(WHITE);
display.setCursor(10,0);
display.clearDisplay();
display.println(CR);
display.setCursor(10,18);
display.println(bt);
display.setCursor(40,18);
display.println();
display.setTextSize(1);
display.setCursor(40,0);
display.println("mR/hr");

/////////////////////////////////////////////////BATTERY INDICATION////////////////////////////////////////////
display.drawBitmap(0, 0, fl, 128, 32, WHITE);

if (input_voltage > 3.3) {
display.drawBitmap(0, 0, bt1, 128, 32, WHITE);
if (input_voltage > 3.4) {
display.drawBitmap(0, -5, bt1, 128, 32, WHITE);
if (input_voltage > 3.5) {
display.drawBitmap(0, -10, bt1, 128, 32, WHITE);
if (input_voltage > 3.6) {
display.drawBitmap(0, -15, bt1, 128, 32, WHITE);
if (input_voltage > 3.8) {
display.drawBitmap(0, -20, bt1, 128, 32, WHITE);
}
}
}
}
}

////////////////////////////////////////////////////RADIATION ICON AND BUZZER/////////////////////////////////////////////////////////////
if (s1 == 1){
display.drawBitmap(-10, 0, lcd_bmp, 128, 32, WHITE);
digitalWrite (7, HIGH); // buzzer ON
}
else
{
digitalWrite (7, LOW); // buzzer OFF
}
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////
if (currentMillis1 - previousMillis1 >= interval1) {
previousMillis1 = currentMillis1;
if (s1 == 1){
s1=0;
}
}
display.display();
}
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////

Com pots comprovar és molt simple (Tot i que sembla llarg per aquests ajustos per la pantalla), tan sols ha de fer aquesta conversió de l'voltatge que rep la placa Arduino a una sèrie de dades que es puguin plasmar a la pantalla o display.

Si tot ha anat bé, hauries de veure la infromació a la pantalla i soroll en el brunzidor quan enfrontis al teu comptador Geiger amb alguna font radioactiva.

Fonts:

Instructables - DIY Arduino Geiger Counter

Cooking-Hacks - Geiger Counter: Radiation Sensor Board for Arduino and Raspberry Pi


2 comentaris, deixa el teu

Deixa el teu comentari

La seva adreça de correu electrònic no es publicarà. Els camps obligatoris estan marcats amb *

*

*

  1. Responsable de les dades: Miguel Ángel Gatón
  2. Finalitat de les dades: Controlar l'SPAM, gestió de comentaris.
  3. Legitimació: El teu consentiment
  4. Comunicació de les dades: No es comunicaran les dades a tercers excepte per obligació legal.
  5. Emmagatzematge de les dades: Base de dades allotjada en Occentus Networks (UE)
  6. Drets: En qualsevol moment pots limitar, recuperar i esborrar la teva informació.

  1.   Paola va dir

    Hola, m'agradaria fer-ho amb arduino uno i em preguntava quin seria l'esquema per a muntar-lo i si alguna cosa més canviaria

    1.    Isaac va dir

      Hola Paola,
      La connexió és igual a UN. I fins i tot pots canviar algunes connexions en altres pins si ho prefereixes, l'únic que hauries alterar també el codi de l'sketch perquè es corresponguin amb els que vas posar. Però és igual. Respecta les connexions GND i de Vcc, i la resta com dic pots posar-lo en un nombre diferent o al mateix de la teva placa ... (això sí, respecta les E / S digitals i les analògiques com estan a la placa Nano)
      Una salutació!